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Introduction (1)

e T2K’s approved POT by J-PARC PAC is 7.8e21.
— Current delivered POT is 1.1e21 (15%).

e T2K started a discussion to extend the T2K running
up to 25e21 POT*.

— T2K also started a discussion about the collaboration
efforts equivalent to 1.5~2 times statistical increase. (Horn
current optimization, new SK samples/fiducial volume, ...)

A case study on expected POT projection

Year (20XX) 15 16 17 18 19 20 21 22 23 24 25 26 27 28

POT (e21) 14|23 (31|39 |54 |71 |90 (11.1|133|15.7|18.1|20.6|23.1( 25.5

Power (MW) 0.360.40|0.46|0.70(0.80|0.89|1.06|112|1.19|1.29|1.29|133|1.33|1.33

T2K T2K extension

* Workshop for Neutrino Programs with facilities in Japan
http://www-conf.kek.jp/ws_nu_prog_in_jp/




Introduction (2)

* Hyper-Kis a next generation underground water
Cherenkov detector, the successor to Super-K.

— The fiducial volume is 25 times larger than one of Super-K.

* Physics potential of Hyper-K + J-PARC v beam*

— CP phase precision: <19°
— CP discovery coverage: 76% (30), 58% (50)

* Proposed timeline of Hyper-K
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* PTEP 053C02 (2015)
Condition: 1.5x10%2 POT (7.5MW x 107 sec.), sin?20,,=0.1, mass hierarchy known




Current T2K systematic errors

2014 — 2015

S e sl

v flux 16% 11% 7.1% 8%

v flux and w/o ND measurement 21.8% 26.0% 9.2% 9.4%

cross section w/ ND measurement 2.7% 3.1% 3.4% 3.0%

v cross section due to difference of 5 0% * 4.79%* ‘ ‘ 10% 9.8% ‘

nuclear target btw. near and far

Final or Secondary 3.0% 2.4% 2.1% 2.2%

Hadronic Interaction

Super-K detector 4.0% 2.7% 3.8% 3.0%

total w/o ND measurement 23.5% 26.8% 14.4% 13.5%

w/ ND measurement 7.7% 6.8% 11.6% 11.0%

There are on-going efforts to reduce this nucleus-dependent errors
with water target measurements in T2K near detectors.

* 2014 errors don’t include the effect of multi-nucleon bound state at the neutrino interaction.



Effect of syst. errors for 0., measure. (1)

Ax? for resolving sind.p#0 in T2K

F lmmm | Possiblencwgoal ° Atthe goal of the T2K
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true Op = -/2, true MH = NH
50% v + 50% anti-v mode

* Discussion about the extension is just started.
Nothing has been decided yet. 6



Effect of syst. errors for 9., measure. (2)

* Significance of CP violation vs. 0., w/ Hyper-K + J-PARC
— Dominant syst. error is the intrinsic v, BG

Intrinsic v, uncertalnty

NX T T T T [ T T T T [ msssm No Systemat CS (77/) [ T T T T T T [ T T T _|
< rellmlnar — Intringic . 5% (716%)
(76%)
! 14 P Y Intrinsic v, 10% (73%) 750kW, 10 years
5 1 s Intrinsic ve 20% (66%)

v:anti-v mode = 1:3

5%
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Input o,
20% error of intrinsic v_ can ruin the sensitivity.
r=]
< 5% error is ideal.

True osc. param.  sin?(20;3) = 0.084 & 0.005, sin*(623) = 0.5, sin®(612) = 0.306,
Am3, =7.5-10"%eV?, Am3, =2.4-103eV?




T2K near detectors (ND280)

0.2 T magnetic field
Surrounding ECALs

UAI Magnet

Tracker: Constrain signal/BG
predictions for OA

Fine-Grained Detector (FGD)
active plastic scintillator target*
(+ passive water targets (FGD2))

n° detector (POD) TPCs
active plastic scintillator targets™ | , particle/charge ID

+ passive water targets « Momentum measure
+ brass radiator layers

* active targets with segmented X/Y planes

8




Limitation of current near detectors (1)

* Detector acceptance
— Super-K: 4w coverage.
— ND280: The large angle reconstruction efficiency is
limited to ~“10% by geometry of the FGD.

 Mass fraction of water
— Super-K: 100%
— ND280: 47% (Analyses will use FGD1 and FGD2(water).)

e Neutrino flux

— Super-K: point source The diff. is relevant for extrapolating BGs
where oscillation effect is small:

NCn® and intrinsic v,
— Oscillations change the energy dependence/the flavor of the
flux.

— ND280: line source




Limitation of current near detectors (2)

* Proton reconstruction

— Energy/momentum threshold (from track) or energy
resolution (from vertex activity) of protons with the current
near detector may not be sufficient to give definite answer
for CCQE and Multi-nucleon CCQE-like interactions.

* Vo measurement

— The large amount of material surrounding the inner tracker
of the current ND280 is a background source of converting
photons (y ->e*e’) in FGD for the v, measurements.

— Statistics of v, events for E, < 1.2 GeV with the current near
detectors are too low for a few percent measurement.
(~10% stat. error for 3.9e21 POT)

10



Candidate new ND280 detectors

1. 3D grid water detector

2. High pressure TPC

3. Water based scintillator detector
4. Emulsion detector

11



WAGASCI

* 3D grid-like structure
— X+ grid +y + grid + ... layers
— 4 angular acceptance for charged particles
— H,O(signal):CH(BG) = 79:21

X grid vy grid X
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i?
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_ 7
5cm i

Each cell is filled with
water or hydrocarbon.




WAGASCI (J-PARC T59)

An approved test experiment by J-PARC PAC (T59).
B2 floor of ND280 pit

Downstream MRD Detector
- Magnetized Steel / Scintillator Detector

Side MRD Detector
- 4 Modules

H,O/CH Detector
- 2 Water Modules

- 2 Plastic Modules
- 5120 Channels

Goals
Measure cross section ratio between H,0 and CH with
47 acceptance/<3% error to increase T2K sensitivity.

Schedule

e 2016: Construction of detectors
 Early 2017: Start beam measurement

(Off-axis angle = 1.6 deg.)

o Neutrino flux

WAGASCI
ND280

o
=
N
w

Neutrino energy [GeV]



WAGASCI in ND280 magnet

/
side view Side-TPC P/ Downsiiream-
OB TPC
= (
—_> :G; WAGASCI D
v beam 8
Side-TPC

Excellent charge/particle identification and momentum
measurement for large angle tracks with side-TPCs.
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High-pressure TPC

* High-pressure TPC

— Low thresholds. tidCKer or

range
detector

=» Sensitive to hadronic final state.
— excellent PID capabilities.
— Momentum measurement.

— Almost uniform 4m acceptance.
# of CC events assuming full FV.

2x2x2 m?
e (GOo3 |S 20°C 5 bars 10 bars
: . 6.65 kg 13.3 kg
— Multi-nucleon modeling. He 0 o T
— Multi-pion resonance. Ne 32.5 kg 67.1 kg
] . . 2543 evt/102'pot 5086 evt/10%'pot
— Final state interaction. A 66.5 kg 133 kg
r
, L 5203 evt/|0?' 10406 evt/10?
— Secondary interaction in detector. e n SRy
CF4 146.3 kg 293 kg
| 1450 evt/102'pot 22893 evt/10%'pot

15



Water based scintillator cells
in FGD/POD

Present near detector:

Passive water layers between

plastic scintillator layers

=>» Dead region.

=>» Low energy recoil protons
in passive water produce no signal.

Active scintillating water:
Introduce water based scintillator
cells (< 5mm cell size).

=2 No dead region.

=>» All recoil particles detected.

R&D is on-going.

16




Emulsion detector (J-PARC T60)

An approved test experiment by J-PARC PAC (T60).

Water target Emulsion shifter
emulsion chamber - Time stamps for v events
- Hybrid analysis with

other near detectors
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( water layer : 2rmm ) ot 1.25sec. pitch



Emulsion detector (J-PARC T60)

Pilot analysis: Multi-track vertex search

Selection : '
Search plate > PL10-PL36
Minimum hit plates of tracks > 6
Position & angle allowance for track connection
- up to 30 of 500MeV/c

4 track vertex — 1

. 3 track vertex — 2

2 track vertex — 6

Expected v int. ~ 10 events for this selection




Candidate intermediate detectors
(1~2km from target)

1. Water Cherenkov detector with wide
off-axis angle coverage

2. Gd-doped water Cherenkov detector

19



VPRISM

* An experimental method to remove uncertainties of
neutrino interaction(+ FSI&SI) from oscillation analysis.
Linear Combinations

xxxxx

% 30 T 4‘10°C‘)ff-‘ Fi T:‘« _ L '..
: b :
i +0.4 o ' :'
Spectra at at Observed muon Muon p&0 §
each off-axis bin kinematic g '
from flux model distributions
Fl_.l!-
Muon pé&0 i
p,~cosfll, From Lincar Combination
i’ 'y -
Linear combinations reproduce the Cos
oscillated flux, and predict muon kinematic
—— ] distributions for the oscillated flux o]
052 040608 1 12141618 2 ‘) n..: 1 (K] 2 25 1
E, (GeV) p, (GeVic)

Use the templates of muon p-0 distribution for the oscillation fit. 20



VPRISM

* Detector

— 10m diameter water cherenkov detector (~3000 8 inch
PMTs with 40% photo coverage)

— 50m height detector hall (covers 1-4° off-axis.)

— Move up and down in the hall to take measurement at
different off-axis angles.

100 m Ground level
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Flux/[enr. 100 MEV . 1621 POT)

VPRISM

* v, disappearance analysis

— 4.3 % systematic effect on sin?26,, from “multi-nucleon”
modeling when using ND280. =»1.2% when using vVPRISM.

A template for the oscillated flux. sin20,, sensitivity (T2K, v mode)
o 01 -
30000 Oscillated SK flux S owf- preliminary  [— statonly |
, { 0.08k vPRISM =
25000 Fitted vPRISM flux (SDN 0.075 — T2K-2012 Sys. Err. %
20000 g 0.06; E
15000 005 E
0.04}— _
10000 - —
0.03: -
5000 0.02; . . —:
ootk Preliminary -
0 8 3
0 02 04 06 08 i 12 14 16 18 2 T L“” 124 x10;°POTka

* Other physics
— Short baseline v, appearance (Sterile neutrino search).
— Cross section measurements using monochromatic beams. 2



TITUS

2kton Gd-doped (0.1%) water Cherenkov detector
4m 2m

~2km from J-PARC < 7 M >
2.5° off-axis ‘/y\ .
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Magnetized muon-range detectors
23



TITUS

Neutron capture on Gadolinium: L on \
— Cross section of 49,000b compared to 0.3b for H T:harged o
Iéptgn lG\an‘q‘ma rays

— 8MeV gamma cascade with 4-5MeV visible energy
— 0.1% Gd doping: ~90% of neutrons capture on Gd

Originally detectable signal New signal

New signal to distinguish v / V' events and different interaction modes:

— v, CCQE: Vytn > W +p 0 neutrons

— v, CCQE: V,tp > p+n 1 neutron

— v, MEC: Vv, + (n+p/n)->w+p+p/n 0.2 neutrons on average

— v, MEC: v,+(p+p/n)>u+n+p/n 1.8 neutrons on average
CCQE MEC I

80%
\)p M Vlly
- ) b N,
XN AT
A =

\
197 A A A N
1%

il Single nucleons 24
M., M., ., R. Subedietal, Science 320, 1476 (2008).




TITUS

Ocp Sensitivity (Hyper-K + J-PARC)

o 015
fas) -
N 0.14F ~~ HK only
5 o1ab 750kW, 10 years
01ob V:anti-v mode = 1:1 TITUS+HK
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5 90% contours ]
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Parameter Nominal value and Prior Uncertainty
dop 0.0, uniform in dop
sinZ 263 0.095, uniform in sin? 26,3
sin203 1.0 & 0.03 (= sin2 2653 > 0.95 at 90% CL)
sin?201,  0.857 & 0.034
Am?, 2.32 £ 0.10 x 1073 eV?2

2
Ams,
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" 0.45F
0.4k
0.35
0.3
0.25
0.2
0.15

0.1
0.05

llllllllllllll T

T | T T T | T T T

preliminary

= HK only
HK+TITUS with Gd
== HK+TITUS wio Gd

= HK+TITUS (stat only)

lllllll]lllllllllllllllllllllllllllllll

L l L 1 L ] 1 1 1

o

20 40

L1
100

integrated beam power [750kW x 107s]

17% precision improvement
due to neutron tagging
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Physics requirements vs. detectors
(my personal view)

v H,O 4n Wrong NC, Muon Hadronic # of CCn®

e

cross target accep. sign Int.v, FS FS neutron

section BG BG VS. V (Gd)

Current
ND280

ND280
(WAGASCI)

ND280
(HP-TPC)

ND280
(WbLS)

ND280
(Emulsion)

vPRISM




Summary

* Reduction of systematic errors is getting more
important in the era of T2K extension™ to
improve the sensitivity.

— It becomes more important to constrain the
errors with near detector measurements.

* Each new candidate near detector has pros
and cons.

— We should make final decision taking into account
complementarity among them.

* Discussion about the extension is just started. Nothing has been decided yet.



